Calculation of the Absolute Rate of Human Cu/Zn Superoxide Dismutases from Atomic-Level Molecular Dynamics Simulations
نویسندگان
چکیده
Based on the recently derived general expression for the rates of diffusion-controlled reactions, we calculate the rates of dismutation of the superoxide anion radical catalyzed by Cu/Zn superoxide dismutases (SOD). This is the first attempt to calculate the absolute rates of diffusion-controlled enzyme reactions based on the atomiclevel molecular dynamics simulations. All solvent molecules are included explicitly and the effects of the structural flexibility of enzyme, especially those of side chain motions near the active site, are included in the present calculation. In addition, the actual mobility of the substrate molecule is taken into account, which may change as the molecule approaches the active site of enzyme from the bulk solution. The absolute value of the rate constant for the wild type SOD reaction obtained from MD simulation is shown to be in good agreement with the experimental value. The calculated reactivity of a mutant SOD is also in agreement with the experimental result.
منابع مشابه
Differential temperature sensitivity of pea superoxide dismutases.
The activity of pea (Pisum sativum L.) Cu/Zn and Mn superoxide dismutase isoforms was evaluated across a range of temperatures from 10 to 45 degrees C. Maximal activity of the Cu/Zn and Mn superoxide dismutase isoforms was observed at 10 degrees C. Both cytoplasmic and chloroplast Cu/Zn superoxide dismutases exhibit a reduction in staining intensity with increasing temperatures. Mn superoxide d...
متن کاملA histidine-rich metal binding domain at the N terminus of Cu,Zn-superoxide dismutases from pathogenic bacteria: a novel strategy for metal chaperoning.
A group of Cu,Zn-superoxide dismutases from pathogenic bacteria is characterized by histidine-rich N-terminal extensions that are in a highly exposed and mobile conformation. This feature allows these proteins to be readily purified in a single step by immobilized metal affinity chromatography. The Cu,Zn-superoxide dismutases from both Haemophilus ducreyi and Haemophilus parainfluenzae display ...
متن کاملSuperoxide dismutases: active sites that save, but a protein that kills.
Protection from oxidative damage is sufficiently important that biology has evolved three independent enzymes for hastening superoxide dismutation: the Cu- and Zn-containing superoxide dismutases (Cu,Zn-SODs), the SODs that are specific for Fe or Mn or function with either of the two (Fe-SODs, Mn-SODs or Fe/Mn-SODs), and the SODs that use Ni (Ni-SODs). Despite the overwhelming similarities betw...
متن کاملRole of the dimeric structure in Cu,Zn superoxide dismutase. pH-dependent, reversible denaturation of the monomeric enzyme from Escherichia coli.
To investigate the structural/functional role of the dimeric structure in Cu,Zn superoxide dismutases, we have studied the stability to a variety of agents of the Escherichia coli enzyme, the only monomeric variant of this class so far isolated. Differential scanning calorimetry of the native enzyme showed the presence of two well defined peaks identified as the metal free and holoprotein. Unli...
متن کاملRegulation of the synthesis of superoxide dismutases in rat lungs during oxidant and hyperthermic stresses.
Heat shock proteins are induced at normal temperatures by oxidants and during reoxygenation following hypoxia. We now report cyanide-resistant O2 consumption increased 30-50% in rat lungs exposed to heat shock or reoxygenation following hypoxia. The synthesis of Cu,Zn superoxide dismutase, but not Mn superoxide dismutase, was increased in rat lung slices by in vivo hyperthermia (39 degrees C), ...
متن کامل